
Optimizing self-exercise scheduling in motor stroke using Challenge
Point Framework theory

Abstract— An important challenge for technology-assisted
self-led rehabilitation is how to automate appropriate schedules
of exercise that are responsive to patients needs, and optimal
for learning. While random scheduling has been found to be
superior for long-term learning relative to fixed scheduling
(Contextual Interference), this method is limited by not ade-
quately accounting for task difficulty, or skill acquisition during
training. One method that combines contextual interference
with adaptation of the challenge to the skill-level of the player is
Challenge Point Framework (CPF) theory. In this pilot study we
test whether self-led motor training based upon CPF scheduling
achieves faster learning than deterministic, fixed scheduling.
Training was implemented in a mobile gaming device adapted
for arm disability, allowing for grip and wrist exercises. We
tested 11 healthy volunteers and 12 hemiplegic stroke patients
in a single-blinded no crossover controlled randomized trial.
Results suggest that patients training with CPF-based adaption
performed better than those training with fixed conditions. This
was not seen for healthy volunteers whose performance was
close to ceiling. Further data collection is required to determine
the significance of the results.

I. INTRODUCTION

Intensive and repetitive motor practice is crucial for
recovery of upper extremity functions following a stroke
[1]. Whilst the number of patients who need rehabilitation
increases, availability of physical therapists and specialist
gym facilities remains limited [2]. Many simple methods for
unsupervised, self-led exercise programmes, e.g. paper-based
instructions (such as GRASP [3]), achieve minimal participa-
tion due to a lack of patient motivation and engagement [4].

Serious games can provide an engaging and interactive
platform to motivate patients to actively participate in
self-driven therapy [5]. Studies such as [6] showed Wii-
based movement therapy to be as effective as modified
Constraint Induced Movement Therapy (CIMT) with high
patient compliance. However, the vast majority of existing
rehabilitation games, including bespoke rehabilitation
hardware, rarely adapt to the patients condition resulting
in diminished skill acquisition [7], [2].

Efforts to tailor serious games based on patients abilities
have resulted in positive outcomes. The most developed
paradigm is to assist a patient through active means [8].
Studies such as [9] and [7] have shown positive outcomes
to assisting patients through physical active-robotic means.
Though, such a strategy may encourage a patient to slack if
the presence of assistance is detected and rely on complicated
robotic devices [2]. Few studies have attempted to adapt only
the virtual task dynamics. N. Hocine et al. showed increased
movement amplitude over a graphics tablet work-space when
dynamically adapting difficulty [10]. Though, their system

required complex offline computation and allowed for unpre-
scribed movements. Thus, limiting the ability to determine
efficiency over current physical therapy practices.

Y Choi et al. [11] illustrated an implementation of the
Challenge Point Framework (CPF) without changing real-
world task dynamics. The adaptation employed elements
of flow (first coined by Czikszentmihalyi [12]), Contextual
Interference (CI), and Knowledge of Result (KR) to create
an optimal learning experience [13]. The CPF conceptualizes
CI and KR as practice conditions that are affected by the per-
former’s skill level and the task difficulty [13]. CI is a learn-
ing phenomenon where interference during practice yields
poor practice performance but results in a stronger long-
term memory representation thereby yielding greater long-
term performance [14]. KR describes the effect of providing
feedback of performance to a learner to encourage a change
in their action plan in a desirable way [13]. Flow is a psychol-
ogy term used to conceptualize a learner’s engrossment and
effort within a task based upon their skill level and the level
of challenge [12]. The CPF attempts to challenge performers
at their optimal motor capacity, guiding them towards a state
of flow, whilst randomizing a multi-task practice schedule
which promotes long-term memory, at the expense of short-
term performance. Y. Choi et al. proposed that randomizing
practice order alone still contained a limiting factor of prac-
tice redundancy, whereby tasks that the performer finds most
challenging will be favoured over easier tasks. However,
their study only analyzed healthy volunteers and did not
investigate their adaptive approach on a patient cohort.

N. Schweighofer et al. illustrated CI effects on long-
term memory in chronic stroke patients when exposed
to a pseudo-random schedule of training. The protocol
consisted of patients performing 300 repetitions of three
similar gripping tasks, over two days, using a grip-force
device to track three identical trajectories that were merely
phase-shifted to achieve differences in tasks. Long-term skill
level was marginally higher following random training but
not following fixed training. Given the similarity of tasks,
adaptation was not necessarily influencing performance
alone, due to skill transfer between tasks. In reality, patients
will often train on vastly different motor skills [14].

The article [12] presents a theoretical approach to account
for differences in skill level between two players competing
in a game that involves a reaching-like movement. J. E.
Duarte et al. discuss the intertwined relationship between
player skill level, task difficulty, and motivation, by drawing
upon concepts of both flow and the CPF. They hypothesize
that dynamically adapting difficulty to regulate the level of



success for each player will account for skill discrepancies
whilst promoting both motivation and learning. Though, the
experimental procedure allows for unprescribed movements,
whereby CI levels are determined by player behaviour and
game dynamics. Thus, no optimization of CI can occur.

Though it is recognized that difficulty adaption is required
within serious games for stroke rehabilitation, research is
still yet to uncover how best to optimize such adaption and
structure training sessions. Many adaption techniques within
literature employ ad-hoc solutions that rely on either specific
robotic or game metrics, and lack generalization.

This paper describes a pilot study investigating the poten-
tial use of a theoretical CPF [13], following the implemen-
tation of Y. Choi et al. [11].

II. METHODS AND MATERIALS

A. GripAble System

Rehabilitation programmes take priority of lower-limb
over Upper-Limb (UL) function despite the imperative re-
quirement of UL function within Activities of Daily Living
(ADLs) [15]. Thus, we used GripAble, depicted within
Figure 1, to specifically target training of hand function
within this study. The GripAble is a low-cost passive hand-
grip promoting independent rehabilitation of grasp and upper
limb function. The device is wireless and allows patients to
engage in repetitive and meaningful training via software on
an Android tablet at home or within clinic.

Fig. 1. GripAble hand-grip device and rehabilitation apps. The device is
capable of measuring both finger flexion and extension force and wrist/arm
motion depending on experimental protocol. Extension force is measured
with the use of Velcro-straps that affix around the wrist and over the fingers.

The controller is ergonomic and compliant with a dynamic
flexible moving shell allowing both isotonic and isometric
muscle behaviours without compromising force sensitivity.
Further detail of technical specifications and usability can be
found within [16]. The GripAble software is able to capture
and record grip-force, which is used within training games
e.g. to track a trajectory by controlling a character.

B. Patient Information

Stroke patients suffering from upper limb hemiparesis but
cognitively able to understand and concentrate for the length
of the study were recruited. Patients with significant co-
morbidities e.g. visual neglect, severe cognitive impairment,
and depression were excluded. All patients screened were
admitted at Charing Cross Hospital at the Hyper-acute/Acute
Stroke ward. Before patients were approached, permission
to test each patient was approved by both the consultants
and the research ethics committee (REC) at Imperial Col-
lege London NHS Trust. Ethical approval was granted by
the NRES Committee South East Coast-Kent Committee.
Written informed consent was obtained from the participants
after the nature of the study was explained.

Table I gives an overview of patients recruited for this
study. 143 patients with arm-weakness were screened, of
which 15 were recruited and 12 participated, aging from
43-96y (66± 17y). The majority of patients excluded either
suffered from severe wrist impairment, cognitive deficits that
impaired their ability to follow instructions, or were due
to be moved or discharged from the ward. Three patients
failed to complete the study due to admission from the
hospital, but their partial data sets have been included. Three
patients withdrew consent. 12 healthy student volunteers
were recruited aging 20-22y (21 ± 1y). One volunteer was
excluded from the study due to switching between dominant
and non-dominant hands.

The Hospital Anxiety and Depression (HAD) scale and
Edinburgh Handedness (EH) was administered prior to re-
cruitment. Fugl-Meyer (FM) was administered following
recruitment and once patients completed the study.

C. Protocol

Candidates were comfortably seated, within a standard
chair or sat up in bed, in front of a tablet (at a distance of
0.5m) with a GripAble placed in their non-dominant (healthy
subjects) or hemiplegic hand (patients) and, if necessary, arm
resting on a cushion with wrist in neutral position and elbow
at 90.

Table II gives an overview of the protocol where BL is a
baseline trial, TR are training trials (54 trials with duration
fixed at 12 minutes for both groups and a flexible break after
6 minutes), PRE and POS are pre- and post- training assess-
ments (9 trials) directly preceding or following a training
session. A ten-minute rest interval following each training
session was provided prior to a post assessment. Patients
were asked to perform a visuomotor tracking exercise using
wrist or finger movements. Nominal difficulty of tasks and
regularity within trial space varied over the course of 5
training sessions (3 days) for the adaptive group, or re-
mained constant for the fixed group, whilst ensuring intensity
remained constant between both groups. Candidates were
randomly assigned to either a Fixed (constant conditions) or
Adaptive (varied conditions) group with no cross-over using
the single-blind method.



TABLE I
PATIENT INFORMATION AND CLINICAL DATA (IS = ISCHEMIC, SC = HEMORRHAGIC, A = AMBIDEXTROUS)

Patient ID Age Stroke
type

Dominant
side

Affected
side

Post-stroke
duration
(days)

Gender HAD Sessions
Completed Group

pt001 73 IS R L 8 M 21 3 2
pt002 68 H R R 12 F 7 5 1
pt003 61 IS R R 4 M 10 5 2
pt004 96 IS R L 15 F 23 5 1
pt005 39 IS R L 7 M 21 5 1
pt006 91 IS R R 11 F 6 5 2
pt007 53 IS A R 11 M 0 5 2
pt008 73 IS L R 9 M 13 4 1
pt009 65 IS R L 5 M 1 5 2
pt010 44 IS R R 6 M 20 5 2
pt011 70 IS R R 2 F 4 5 1
pt012 59 IS R R 6 M 21 2 1

TABLE II
PROTOCOL OVERVIEW

Day: 1 2 3
BL PRE 2 PRE 4

Morning: TR 1 TR 3 TR 5
POS 1 POS 3 POS 5

PRE 1 PRE 3 PRE 5
Afternoon: TR 2 TR 4

POS 2 POS 4

Conditions within assessments (BL, PRE, and POS) were
identical between both groups with a randomized order
of tasks to allow performance to be an indicator of skill
acquisition, as opposed to observing the effects of tracking
error reduction. Training was split over the morning and
afternoon periods to achieve high repetitions of tasks, which
is necessary to promote learning, whilst preventing fatigue.

D. The Challenge Point Framework

A new game, depicted within Figure 2, was developed for
this study due to the specific protocol and data requirements
between training sessions. Each trial began with a cue, to
illustrate the GripAble movement that would control the
character, followed by a count-down prior to starting the trial.

In [14], N. Schweighofer et al. represented three tasks
using grip force and identical trajectories that were phase-
shifted, which may have limited CI effects as both move-
ment patterns and trajectories were similar resulting in less
interference between tasks in randomized practice. We aim
to increase task variability as this is more practical when
applied to functional rehabilitation environments. Thus, we
select wrist radial/ulnar deviation, supination/pronation, and
finger flexion/extension to represent three individual tasks,
each with corresponding trajectories to reinforce the required
movement by association. These movements were selected
as they vary in nominal difficulty and are each a different
degree-of-freedom thereby requiring alternating neural pat-
terns to produce the required motor behaviours.

Players were awarded points based on popping the
bubbles by following the trajectory. Thus, Knowledge of
Result (KR) is constantly provided throughout the study.

Each trajectory variation contained varying amounts of
bubbles based upon trajectory frequency and period.

Fig. 2. Game and task design. Tasks 1, 2 and 3 are represented as
unique trajectories and GripAble movement patterns. For each trial, the
background scrolls from right to left with an animated fish character, giving
the perception of player propagation through the trial. A cue of the GripAble
movement pattern is then presented followed by a count down prior to
propagating the trajectory. The time and score of the trial is always shown
on the top right of the screen.

Two algorithms were used to adapt gameplay by varying
both task regularity within trial space (prior to training), and
the nominal difficulty of a task (within training). In [11]
healthy volunteers performed best when exposed to both
algorithms. Research has shown that randomizing tasks in-
duces CI effects; though, Y Choi et al. expresses limitations
due to practice redundancy of tasks that the learner can
perform well. Thus, we not only randomize task order but
also vary task regularity using Equations 1-4.

NT (k) = NTT × ε̂(k) (1)

ε̂(k) =
εpres (k)× εposs−1(k)∑
i(ε

pre
s (i)× εposs−1(k))

(2)

εs(k) = P (k)− P ref (k) (3)

P (k) =
BubbleCountk
TotalBubblesk

(4)

where NT is the number of trials to be scheduled for a
given task, NTT is the number of total trials, k is a task, and
ε̂(k) is the normalized performance error for a given task.
ε̂(k) is calculated from εposs−1 and εpres , which are the post-
and pre- assessment performance errors for the previous and
current training sessions respectively. The denominator is a



normalizing factor which ensures that
∑

k(ε̂(k)) = 1 [11].
Equation 3 illustrates how performance error is calculated
for a given assessment session. The performance error εs(k)
is calculated based upon the number of bubbles collected in
each trajectory P minus a P ref performance reference. We
choose to calculate performance based on a finite score as
the error is unbounded within the game context. We must
normalize performance, as the bubble count is frequency
dependent and may vary based on character speed. Pref was
set at 80% of the total bubbles for each task, so as to be
suitable for both controls and patients. The number of trials
per task is limited to 8-32 trials to prevent one task from
saturating a training block whilst still allowing the tasks that
the performer finds most challenging to be practiced more
often.

We vary nominal difficulty of tasks by changing the
speed at which the character propagate through the level.
Motor adaption of the background velocity, which affects
both perceived character speed and trajectory frequency, was
performed using Equation 5.

Dt(k) = Dt−1(k)
(
1 + α

(
Pt(k)− P ref (k)

))
(5)

where t is a trial, k is a task, D is the difficulty for a given
trial, α is a constant representing the learning rate, Pt is the
performance of the player for the current trial, and P ref is
the performance reference. Trajectory repetitions (that are set
to two) were truncated, so as to alter the challenge aspect
without providing additional practice time.

E. Analysis

We determine skill acquisition of candidates by calculating
the average tracking error. We do not use performance error
as this is a metric of success that may be affected by
game dynamics (e.g. the diameter of the character). We
first calculated error using the difference between trajectory
and player path, shifting the trajectory to remove bubble
propagation to the character at the start of the trial, and
taking the Root-Mean-Squared Error (RMSE) for a given
trial. The RMSE was calculated using a convolution with
a window of 0.25 seconds taking the median of window
samples to remove sporadic motion and grip artefacts. We
then compute the median error across all trials of the same
task, so as to not favour rare occurrences of good or bad
performance, and use the mean of medians to compute the
average performance across all tasks for a given assessment,
so as to not disregard good or bad performance of an
individual task. Initially we first check the data with a
Shapiro-Wilk analysis, verifying whether the data has normal
distribution. This test also identifies any outliers. A Levenes
test was then used to highlight equal variances across the two
study groups (fixed and adaptive), for both the control and
patient cohorts. An unpaired two-sample T-Test was used to
check for a statistically significant difference between any
two groups. The significance level was < 0.05.

III. RESULTS AND DISCUSSION

There was no significant difference between conditions in
the baseline test of day 1 for controls, RMSE µ = 26.89±
9.19 and µ = 20.86 ± 7.74 for Fixed and Adaptive groups
with t-test p = 0.053. This was also true for patients, µ =
26.21± 9.53 and µ = 28.11± 10.88 with p = 0.58.

In the delayed retention test on day 3 there was no
significant difference for controls, where µ = 24.06 ± 2.35
and µ = 26.19 ± 2.98 with p = 0.22. This was also true
for patients, µ = 25.12± 10.75 and µ = 19.59± 3.67 t-test
with p = 0.31. Though results did not reach significance,
we found that patients within the adaptive group performed
better than those within fixed with a 22% relative average
improvement in RMSE. This effect was not seen within
controls. There were no significant differences when analyz-
ing day 3 delayed retention test for each task, in the task
order: finger flexion/extension, wrist supination/pronation,
and wrist radial/ulnar deviation, where F is Fixed and A
is Adaptive, for controls: [F : µ = 26.76 ± 7.31, A :
µ = 31.87 ± 2.15, p = 0.17], [F : µ = 28.28 ± 4.01, A :
µ = 28.85 ± 8.25, p = 0.88], [F : µ = 17.15 ± 1.76, A :
µ = 17.85 ± 2.09, p = 0.56] and for patients: [F : µ =
27.28 ± 19.32, A : µ = 23.42 ± 5.31, p = 0.68], [F : µ =
22.92 ± 4.29, A : µ = 17.81 ± 4.49, p = 0.13], [F : µ =
25.15± 13.73, A : µ = 17.55± 2.75, p = 0.26].

Figure 3 shows trial errors over five training sessions
for a patient in the adaptive group. Performance over day
one varies considerably during training. Subsequent train-
ing sessions show improvement; though, error difference
between trials still partially fluctuates. This is an expected
hypothesis of CI, whereby short-term performance gains
are compromised to promote use of the use of long-term
memory. Error difference between post- and pre- assessments
illustrate consistent performance.
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Fig. 3. Participant pt010 training trial errors over three days, where
figures a-c) represent finger flexion/extension, wrist supination/pronation,
and wrist radial/ulnar deviation. The dotted vertical lines represent morning
or afternoon sessions. Each point on this graph is a trial, each circle and
plus is the median error for post- and pre- tests. Task regularity has been
shown along the x-axis.
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Fig. 4. a,b) Average RMSE and standard error for baseline and the delayed
retention test on day 3 for each task and each condition, where a) is the
control cohort and b) is the patient cohort. For each task shown, average
baseline is the left point and performance on day 3 delayed retention test is
the right point. Task labels are: F Flex/Ext for Finger Flexion/Extension, W
Sup/Pro for Wrist Supination/Pronation, W Rad/Uln for Wrist Radial/Ulnar
deviation. No significance for individual tasks on day 3 were found. c)
Average performance of the three tasks on the delayed retention test on day
3 for fixed and adaptive conditions. The overall median has been shown to
illustrate overall performance for each condition. T-Test p-values shown for
comparison between conditions for each cohort.

Figure 4c depicts overall performance for all tasks for
the delayed retention test on day 3 and illustrates that the
adaptive algorithm caused controls to perform worse than
those training with fixed conditions. Conversely, patients
elicited signs of improvement when conditions of the task
were adapted based on their performance throughout the
study.

Figures 4 a) and b) show baselines (left points) and average
performance of day 3 retention tests (right points) for each
task. Performance was very variable in day 1 as participants
were familiarizing themselves with the GripAble device.

Controls show no distinguishable affect for both wrist
supination/pronation and radial/ulnar deviation by the end
of day 3. Though, controls within the fixed group performed
better than those within adaptive for finger flexion/extension,
which may have solely contributed to a degraded over-
all performance when comparing across all tasks. Patients
within the adaptive group showed a greater improvement
across all tasks than those within fixed group. Though, this
was most distinctive for both wrist radial/ulnar deviation
and supination/pronation. Additionally, patients within the
adaptive group elicited consistent performance, unlike those
within the fixed group where standard error was generally
greater for flexion/extension and radial/ulnar deviation.

Figure 5b depicts total repetitions for each task. Percentage
difference between fixed and adaptive within each cohort
have been shown for ease of comparison. Results show
that the adaptive CI algorithm varied repetitions of tasks
by approximately 3% overall for the control cohort and
17% for the patient cohort. Patients found wrist supina-
tion/pronation the least challenging in comparison to finger
flexion/extension, with wrist radial/ulnar deviation being the
most challenging. Considering the performance for patients
on day 3 retention test (refer to 4b) showed an improvement

of supination/pronation but it was practiced the least, infers
that the adaptive difficulty may have contributed greatly to
this performance gains.

0

0.2

0.4

0.6

0.8

1

1.2

N
o
r
m
.
 
A
v
g
.
 
S
p
e
e
d

Fixed Adaptive Controls Adaptive Patients

F Flex/Ext W Sup/Pro W Rad/Uln

Tasks

80

85

90

95

100

105

110

N
o
r
m
.
 
R
e
p
e
t
i
t
i
o
n
s
 
(
%
)

+0.9%

-2.2%

+0.9%+0.6%

-8.9%

+7.9%

a)

b)

Fig. 5. a) Normalized average speed (difficulty) and standard error over
all training sessions for each task and each condition. Normalizing scalar
was the maximum difficulty. b) Normalized total repetitions over all training
sessions for each task and each condition. Normalizing each task by total
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Figure 5a shows the average normalized difficulty across
all training sessions for each task. Controls within the
adaptive group were on average exposed to greater difficulty
weighting than those within the fixed group. This, combined
with the findings of Figure 5b, may support the notion of a
ceiling effect, where tasks could be considered to be easy to
perform for healthy volunteers. Conversely, patients within
the fixed group experienced greater difficulty weighting.
This, combined with the findings of Figure 4c, may infer
that speed variation to modulate difficulty for motor tasks
may cause patients to become spastic within the fixed group.
Though, this theory lacks evidence as both groups were
assessed using identical conditions following a rest interval
post training.

Though, patients within the adaptive group elicited a
relative improvement of 22% less RMSE than those within
the fixed group, we did not find significance for conditions
when analyzing over all tasks or individual tasks. A criticism
that may limit the relative improvement of patients within
the adaptive group is the presentation of KR. Though, we
present KR throughout the study, patients may have not
been aware of their performance on a trial-by-trial basis.
This is due to the nature of presenting the score outside
of the most focal area of the tablet screen, which is the
character space. In addition, the score would reset for the
next trial that shortly followed. Thus, there was little time



to review and comprehend KR. Though, the protocol used
differs from literature by allowing the task trajectories to
be visually present at all times. This is a standard game
dynamic implemented in a multitude of addictive mobile
games. Though, presenting trajectories as such may have
allowed patients to rely on motor planning as opposed to
engaging long-term memory to increase their performance.
Lastly, we did not consider modulating CI or KR based
on the performers skill level. The CPF theorized that low
levels of CI are preferable for beginning skill levels, whereas
high levels of CI are preferable for more highly skilled
individuals. In following Y. Choi et al. algorithms, we did not
take into account that performers within the patient cohort
may benefit from low levels of CI. A similar concept for KR
also applies, where immediate or frequent feedback for tasks
of high nominal difficulty may yield greater learning effect.
Though, performance of tracking a trajectory is inherently
distinguishable without the presence of KR.

Recruiting factors also limited our capacity to determine
significance. Inclusion and exclusion criteria required at least
some cognitive ability with voluntary motion of the wrist
and fingers. Though, many patients failed to meet both
requirements. In addition, trial repetitions were limited to 54
trials per training session. This was very low in comparison
to Schweighofer et al. . whereby patients performed 150
repetitions within a single training session per day. Thus,
total repetitions of training may have not been sufficient to
affect long-term performance.

IV. CONCLUSIONS

We argue that adaptive paradigms that not only can chal-
lenge patients at an optimal condition but also promote the
use of long-term memory, aid in greater skill acquisition and
long-term retention than simply adapting to motor conditions
alone. The results that have been presented show that patients
who train under adaptive conditions, whereby task practice
order, regularity within trial space, and nominal difficulty
were varied based on participants’ performance, yielded
greater long-term performance. In addition, patients train-
ing with adaptive conditions elicited consistent performance
within the delayed retention test of day 3. This is important as
patients are often unmotivated to rehabilitation programmes
due to a slow progression and perception of inability to
perform the tasks. Prior research within stroke rehabilitation
has not explored the multitude of theories hypothesized
within the CPF. To the authors knowledge, only one study
(N. Schweighofer et al. ), explored CI effects within chronic
stroke patients. Though, this is an individual component of
the CPF. While this study does not offer a conclusive answer
to the question of adapting task practice order and frequency
to induce optimal levels of CI, and finding the optimal chal-
lenge point of task motor dynamics to inducing flow, it does
aid identifying limiting factors of CI and optimal challenge
adaption within stroke rehabilitation. It would be fruitful to
pursue further research about the algorithms discussed within
this paper using alternative game mechanisms that promote
the use of long-term memory in task progression.
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